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A simple technique is described for ascertaining trial models for the structures of perovskites. The 
method relies on an understanding of the fundamental components of the structure. Rules are given for 
determining trial models rapidly. 

Introduction 

The class of materials known as perovskites is of 
considerable technological importance, particularly 
with regard to physical properties such as pyro- and 
piezo-electricity, dielectric susceptibility, linear and 
non-linear electrooptic effects. Many of these prop- 
erties are gross effects, varying enormously from one 
perovskite to another, and yet the differences in the 
crystal structures are hardly apparent. The changes in 
physical properties are particularly large when the 
external conditions, such as temperature or pressure, 
are altered. The huge rise in dielectric constant, by as 
much as a factor of 104, found on heating barium 
titanate is a well known example of this. Generally 
speaking, such effects occur in connexion with the 
simultaneous presence of phase transitions in the 
system, where the atomic structure of the perovskite 
changes either discontinuously or continuously into 
another form. In order to be able to understand the 
origin of the behaviour of the physical properties near 
phase transitions it is necessary to have as complete a 
description as possible of what is happening to the 
atoms in the structure. In the case of the perovskites, 
because the structural differences between one phase 
and another are so slight, it can be extremely difficult 
to carry out a precise structure determination. To the 
casual worker all perovskites look the same; it is only 
by a careful study of the splittings of certain X-ray 
diffraction spots or lines and of the presence of any 
weak 'extra' (often called difference or superlattice) 
reflexions, that one can derive a model for the crystal 
structure. This can be particularly difficult when the 
splittings of the originally cubic reflexions are small 
and the difference reflexions arise from weak scatterers. 
For example, polycrystalline specimens of 
PbZr0.gTi0.xO3 show a very small splitting of the 
powder lines consistent with a rhombohedral  distor- 
tion of a cube but no difference reflexions (except with 
neutron diffraction); a single crystal oscillating through 
2 ° for 20 h has been used in our laboratory in order to 
show their presence. Clearly, such small effects can 
easily be missed and this accounts for the many in- 
correct structure determinations of perovskites carried 
out in the past. 

The purpose of this paper is to set out in one place a 
general method for obtaining a suitable trial model of 
a particular perovskite, a 'recipe' in effect. The method 
outlined here will not be suitable for all perovskites 
(which have a habit of doing the unexpected) but it is 
certainly applicable to a great many of them. The 
technique has been evolved through many years of 
experience and owes a great deal to the work of Megaw 
(1966, 1969, 1971, 1973), who first showed how the 
structures could be broken up into their various com- 
ponents. These components are: 

(i) tilting of the anion octahedra 
(ii) displacements of the cations; these can be 

parallel (ferroelectric structure) or antiparallel (anti- 
ferroelectric structure). 

(iii) distortions of the octahedra. 
These components are also the important parameters 
involved in the soft modes often found near the phase 
transitions. Component  (iii) is usually associated with 
component (ii) and so will not be discussed separately 
here; in any case, distortions are normally of a second- 

Fig. 1. The ideal cubic (aristotype) perovskite of formula ABX3 
(A,B =cation, X= anion). The anions are at the vertices of 
the octahedra. Black circles B cations, hatched circle A 
cation (taken from Megaw, 1973). 
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order nature. As has been shown earlier (Glazer, 1972), 
component (i), when it is present, is the most important 
in establishing the overall space-group symmetry o~ ° 
the particular perovskite. 

If the actual kind of tilting can be established then 
one is well on the way to understanding the diffraction 
pattern, and it is on this aspect that we shall concen- 
trate. Throughout, unless specifically stated otherwise, 
all unit cells will be referred to the pseudocubic axes. 

Ti l t ing  o f  an ion  o c t a h e d r a  

In Fig. 1 is shown a diagram of the ideal perovskite 
(usually the highest-temperature phase), the aristotype 
in Megaw's terminology. When the cations are dis- 
placed or the octahedra are tilted (or rotated), different 
types of structures are produced, hettotypes, which are 
always of lower symmetry than the aristotype. One 
may ask what happens when a particular octahedron is 
tilted about some direction; it turns out that there is no 
unique answer to this. In fact, there are 23 possible 
simple tilt systems (Glazer, 1972). In this earlier work is 
was possible to derive a convenient nomenclature for the 
tilt systems based on breaking the tilting into compo- 
nent tilts about the three pseudocubic axes. 

The tilting of the octahedra has several effects which 
we shall deal with separately. 

(a) Unit-cell lengths 
The most important consequence of the tilting is to 

double certain cell axes. This can be seen in Fig. 2 
where the tilt axis is vertically out of the plane of the 
diagram. The tilting causes the B cation-anion bond 
in one octahedron to rotate in an opposite direction 
to that in a neighbouring octahedron, thus giving rise 
to a doubling of the repeat distances perpendicular to 
the tilt axis. At the same time if we attempt to maintain 
the B cation-anion bond distance we must expect the 
B cation-B cation distance to become shorter and hence 
reduce the axial lengths. If we denote the angles of tilt 
about the pseudocubic [100], [010] and [001] directions 
by e, fl and ? respectively (not to be confused with the 
unit-zell angles), then the new axial lengths are given by 

ap=ao cosfl cos Y (la) 
bp = ao cos ~ cos ? (1 b) 
cp = ao cos e cos fl (1 c) 

where ap, b~, and cf, are the pseudocubic subcell lengths 
and ao the cell edge length of the aristotype. The actual 

2ap < ) 

Fig. 2. Schematic diagram of the tilting of  octahedra  about  an 
axis normal  to the plane of  the paper.  Black circles B cations. 

repeat distances, of course, are twice these subcell 
lengths. If we rearrange these equations thus: 

ap cosfl bp cos 7 cp cos 
bp cosa  cp cosfl  ap cos 

, (2) 

it can be seen immediately that equality of any two 
tilt angles means equality of the cell axes coincident 
with the tilt axes. For example, if the tilts about [100] 
and [010], i.e. ~ and fl, are equal in magnitude then ap 
must of necessity be equal to bp. We have, of course, 
ignored the effect of distortions of the octahedra in 
this process, but since it is the tilts that govern the sym- 
metry so much, we can expect that our argument will 
be reasonable as far as equality or non-equality of 
tilts/lattice parameters is concerned. It does mean that 
we cannot expect to use formulae such as (2) to calcu- 
late absolute values of the lattice parameters unless we 
are sure that the distortions are negligible. We therefore 
see that if the lattice parameters are known we may 
infer the tilt angles or, at least, whether any two are 
equal. This only holds true, of course, when there are 
tilts present; when they are not, the lattice parameters 
are correlated directly with octahedral distortions 
normally produced by cation displacements. 

In the tilt-system nomenclature, equality of tilt 
magnitudes is denoted by repetition of the letters 
appropriate to the particular tilt axes. Thus aae  means 
equal tilts about [100] and [010], a a a  means equal tilts 
about all three axes, and abe means three unequal tilts. 
These symbols therefore tell us immediately which 
unit cell axes are equal. In these examples, we have 

and 

a,  = bp ¢ cp for aae  
ap = bp = cp for  a a a  

ap 4= bp ~ cp for abe.  

(b) Unit-cell angles 
As was shown in the earlier work, there are basically 

two types of tilt: tilts where the octahedra along a tilt 
axis are tilted in-phase about the axis, denoted with the 
superscript + ,  and tilts where the octahedra are tilted 
in antiphase, denoted by the superscript - .  When there 
are no tilts about a particular axis, 0 is used. The signs 
of the tilts are important for determining the lattice 
type and the unit-cell angles. The latter are correlated 
with the signs in the following way. Any two + tilts, 
or one + and one - tilt, mean that the relevant axes 
are normal to each other; any two - tilts mean that 
the relevant cell axes are inclined to each other. Thus 
a -b+e  + has three axes of unequal length normal to one 
another. On the other hand a - a - c  + has two equal 
axes, ap=bp, which are inclined to each other but 
which are both normal to %. Similarly a - a - a -  has 
three equal axes inclined to one another (obviously 
with equal angles). In the 1972 paper the space groups 
of all the 23 possible tilt systems were worked out and 
for convenience they are repeated here (Table 1). 
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(c) Di f ference  ref lexions 
Since tilting of  the octahedra causes a doubling of  

the unit-cell axes, extra reflexions are produced which 
lie on half-integral reciprocal-lattice planes. With 
reference now to the 'doubled '  unit cell these reflexions 
can be indexed with some indices odd, whilst the ordi- 
nary reflexions (the main reflexions) have all h k l  even. 
It turns out, fortunately,  that  the two types of  tilts, in- 
phase ( + )  and antiphase ( - ) ,  result in two distinct 
classes of  difference reflexion. It is a simple mat ter  to 
show that  + tilts give rise to reflexions of  the type 
odd-odd-even, whilst - tilts produce odd-odd-odd 
reflexions. More  specifically we can write the following 
rules: 

a ÷ produce reflexions even-odd-odd 
with k # l  e.g. 013, 031 (3a) 

b + produce reflexions odd-even-odd 
with h # l  e.g. 103, 301 (3b) 

e ÷ produce reflexions odd-odd-even 
with h # k  e.g. 130, 310 (3c) 

a -  produce reflexions odd-odd-odd 
with k # I e.g. 131, 113 (3d) 

b -  produce reflexions odd-odd-odd 
with h # l e.g. 113, 311 (3e) 

e -  produce reflexions odd-odd-odd 
with h # k  e.g. 131 ,311 .  (3f )  

Actually it is possible to go still further  and derive the 
relationships between the intensities of  the difference 
reflexions and the tilt angles, 0c, fl, and ~,. These are 

I(a  +) oc(ki z -  lik)2o~ 2 (4a) 

l (b  +) o c ( -  l ib+ hiZ)2fl 2 (4b) 

I (e  +) ~ ( h i  k - kih)272 (4c) 

l ( a - , b - ,  c - )  

cx:[(ki l -  lik)o~ + ( - -  l ib+ hi')fl + (hi k -  kih)7] 2 (4d) 

where i= l /  1 and the + signs depend on the partic- 
ular choice of  origin for the tilt system (there are two 
such choices in general, but for the present purposes 
we shall not need to consider them). The reader  will 
immediately see that  these relationships are consistent 
with the rules given before. Another  point worth 
noting is that  + tilts produce Bragg reflexions at 
reciprocal-lattice points corresponding to the one-face- 
centred positions, whilst for - tilts they occur at the 
all-face-centred points. When these tilts arise, as they 
often do, through the 'freezing-in' of  a soft mode at a 

Table 1. C o m p l e t e  list o f  poss ib le  s imple  tilt s y s t e m s  

Serial Lattice Multiple Relative pseudocubic 
number Symbol centring cell subcell parameters 

Three-tilt systems 
(1) a+b+e + 1 2ap x 2b o x 2cp 
(2) a+b+b + I 
(3) a + a + a  + I 
(4) a+b+c - P 
(5) a+a+e - P 
(6) a+b+b - P 
(7) a + a + a  - P 
(8) a+b-c - A 
(9) a + a - e  - A 

(10) a+b-b - A 
(11) a + a - a  - A 
(12) a - b - c -  F 
(13) a - b - b -  F 
(14) a - a - a -  F 

Two-tilt systems 
(15) a°b+c + I 2ap x 2bp x 2Cp 
(16) a°b+b + I 
(17) a°b+e - B 
(18) a°b+b - B 
(19) a°b-c - F 
(20) a ° b - b  - F 

One-tilt systems 
(21) a°a°e + C 2ap x 2bp x cp 
(22) a°a°e- F 2ap x 2bp x 2cp 

Zero-tilt system 
(23) a°a°a ° P aj, x bv x cp 

Space group 

ap<bp¢cp Immm (No. 71) 
ao < bp = Cp 14/mmm (No. 139)I" 
ap < bp # cp Bmmb (No. 63) 
ap < bp = c v Bmmb (No. 63) 
ap<bp~cp ~#90 ° F 2 / m l l  (No. 12) 
ap<bp=cp 0~-#90 ° lmem (No. 74)* 

ap=bp < c o C4/mmb (No. 127) 
a o = bp < cp F4/mmc (No. 140) 

av=bp=c u Pm3m (No. 221) 

* These space-group symbols refer to axes chosen according to the matrix transformation (10 ) 
0 ½ -  
0 ½ . 

]" In the 1972 paper tilt systems (10) and (11) were incorrectly given the space-group symbol Pnma and tilt system (16) the 
symbol I4/m. 

a v # b . ~ c .  Immm (No. 71) 
a p ¢ b . = c .  Immm (No. 71) 
a. = bp = c. Im3 (No. 204) 
av#bp#cp  Pmmn (No. 59) 
ap = bp # Cp Pmmn (No. 59) 
ap ~ bp = c u Pmrnn (No. 59) 
ap = bp = cp Pmmn (No. 59) 
a v # b p # c  p ~=/=90 ° A21/mll (No. 11) 
ap=bo#cp c~:#90 ° A2~/mll (No. 11) 
a o # bp = Cp o~ # 90 ° Pmnb (No. 62)*t 
ap = bp = cp o~ # 90 ° Pmnb (No. 62)*'1" 
ao#bj ,#cp ~#flq:7:/:90 ° FT (No. 2) 
ap#bp=cp ~:#fl:#7:#90 ° I2/a (No. 15)* 
ap=bp=c v c~=fl=y#90 ° R~c (No. 167) 
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phase transition, the relevant mode is one with wave 
- r~ !~  for - tilts. vector q =  (~0 )  for + tilts and q -  ~222J 

This is often described as the condensation of a phonon 
at the M and R points respectively of the Brillouin 
zone.* We see then that this system of tilt components 
is naturally related to the normal modes of vibration 
which are so important near a phase transition. 

Cation displacements 

It is considerably more difficult to give any hard-and- 
fast rules for the cation displacements. Sometimes half- 
integral difference reflexions (or odd indices on the 
doubled pseudocubic cell) occur which do not conform 
to the tilt reflexions, in which case it is relatively easy 
to infer the type of displacement. Clearly this can only 
occur when they are antiparallel; when they are parallel, 
however, no difference reflexions are produced. The 
most reliable indication of the displacements is often 
given by the space group due to the tilt system, partic- 
ularly if it is known whether the particular substance 
is centrosymmetric or not. If the displacements are 
antiparallel the structure is centrosymmetric and we 
normally find that the space group is the same as that 
for the tilt system alone. When they are parallel, the 
structure is non-centrosymmetric and the space group 
is a subgroup of that for the tilt system. It is therefore 
relatively easy to suggest the most likely space group 
for the structure and since the A and B cations usually 
lie at special positions we often know the displacement 
directions. 

When there are no tilts present, as evidenced perhaps 
by the lack of the necessary difference reflexions, the 
displacements can often be ascertained from the unit- 
cell geometry. Thus if the unit cell is a rhombohedral 
distortion of the aristotype cell, and no difference 
reflexions are found, it is reasonable to suppose that the 
structure has parallel cation displacements along [111] 
(the threefold axis) with space group R3m. The lowest- 
temperature phase of BaTiO3 is an example of this 
(Rhodes, 1949; Kay & Vousden, 1949). 

One must be careful here, however. It is possible to 
have distortions of the octahedra even when there are 
no displacements or tilts. KCuF3 is an example of this 
(Okazaki & Suemune, 1961), where Jahn-Teller effects 
distort the octahedra to produce a tetragonal structure. 
Fortunately this type of structure is very rare and in any 
case might well be expected since it is well known that 
Cu(d 9) shows strong Jahn-Teller distortion. 

Examples 

Let us consider some examples of known perovskite 
structures in order to see how the technique described 
can be applied in practice. 

* With the origin chosen at the centre of the octahedra the 
irreducible representations for these modes are conventionally 
labelled M3 and Ru. 

(a) The high-temperature phases of NaNbO3 
Above room temperature, NaNbO3 possesses six 

phases. For the present purposes we shall consider the 
four highest phases, labelled S, 7"1, Tz and cubic. 
Lattice-parameter measurements (Glazer & Megaw, 
1973) gave the following results: 

480-520 °C S ap¢ bp-¢ cp 
520-575 °C 7'1 av ¢: bp ¢ cp 
575-641 °C Tz ap=bp<% 

> 641 °C Cubic ap = bp = cp 

all axes or thogonal .  

Weissenberg photographs of the first half-integral 
reciprocal-lattice layers of phase/ '2  (Glazer & Megaw, 
1972), showed the presence of only three, very weak 
difference reflexions, 13 13 15 -~0 -~0, ~ 1  and (130, 131 and 
150 on a pseudocubic cell 2% x 2bp x cp). Since these 
reflexions occur at low angles it is likely that they arise 
from the O atoms and as they are of the odd-odd-even 
type the tilt system (No. 21) a°a°c + is immediately 
suggested.l" The space group from Table 1 is C4/mmb 
and, being tetragonal, is consistent with the measured 
unit-cell geometry. Trivially, two equal (zero-magni- 
tude) tilts mean two equal axes. The initial determina- 
tion of the trial structure in this case took approxi- 
mately five minutes allowing for indexing. Subsequent 
calculations of structure factors confirmed this struc- 
ture. 

Similar photographs of phase T1 (Ahtee, Glazer & 
Megaw, 1969) showed the following reflexions 310, 
130, 131, 151, 312, and 113 (on the doubled cell 
2a v x 2bp x 2cp). It was possible to infer from this that 
these were tilt reflexions which could be broken down 
into the following: 

310, 130, 312 c ÷ tilt (odd-odd-even) 
131, 151 a -  tilt (odd-odd-odd). 

Reference to (3) shows that there is neither a b + nor a 
b -  tilt. This suggests structure (No 17) a-b°c + with 
space group Ccmm; this orthorhombic space group is 
again consistent with the lattice parameter measure- 
ments. We have three unequal tilts and three unequal 
lattice parameters. 

Finally in phase S, the reflexion 510 was observed 
(Glazer & Ishida, 1974) in addition to the above 
reflexions, suggesting a b + tilt. This gives the structure 
of phase S as (No. 4) a -b+c  + with space group Pnmm, 
with unit-cell geometry again consistent with the 
measured lattice parameters. The four phases are sum- 
marized thus 

a_b+c+(S) s~c a_bOc+(T0 575..~C 

a°a°c + (Tz) 6~c aOaOa o (cubic), 

showing the progressive loss of tilts one by one as the 
temperature is raised. 

t Note that in this tilt ~ystem one of the unit-cell axes is 
not doubled. 
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(b) The room-temperature structure of CaTiO3 
The structure of CaTiO3 was determined by Kay & 

Bailey (1957) from single-crystal data. Here we shall 
consider the powder diagram and see how much can 
be inferred from it. From the splittings of the main 
reflexions it can easily be determined that 

ap=bp#cp ~#90 °.  

The fact that the angle between the ap and bp axes is 
different from 90 ° suggests two antiphase tilts (from 
the rules given earlier) and the equality of ap and bp 
further suggests that the tilt angles are equal. Two 
possibilities arise, (No. 10) a - a - c  + or (No. 20) a - a - e  ° 
(space groups Pbnm and Imam respectively), as given 
in Table 1. Examination of the difference reflexions in 
the powder diffraction pattern allows one to classify 
the reflexions into classes, and Table 2 can be con- 
structed. We see that the presence of 00/-type reflexions 
supports the a - a - e  + system. 

In Table 2 no attempt has been made to consider the 
signs of the hkl, except where absolutely necessary. 
Note that in the last column, tilt system a - a - e  + has 
been used to index certain difference reflexions, the 
remaining ones, N =  13, 17 and 29 not being consistent 
with any tilt type. It is natural, therefore, to suggest 
that these reflexions arise from antiparallel cation dis- 
placements. 

We can get some idea of the directions of the cation 
displacements in the following way. Consider Fig. 3 
which shows schematically the tilt arrangement 
a - a - e  +. The displacement of the Ca atom will be 
linked to a great extent to its environment by simple 
steric principles. Let us examine the environment of the 
Ca atom marked A. Firstly, of the O atoms numbered 
5, 6, 7 and 8 the closest are 5 and 8 since they are dis- 
placed towards the Ca atom, thus tending to push it 
along [010]. Secondly, of the O atoms 9, 10, 11 and 12 
number 12 is closest to the Ca atom and thus tends to 
push it along [i-i0]. O atoms 1, 2, 3 and 4, however, 
are not sufficiently close to the Ca atom to affect its 
position much. We see, then, that two O atoms push 
the Ca along [010] and one along I/T0]. To a gross 
approximation we find that the resultant vector dis- 
placement is 

21010]+[ii0]=[i10].  

Proceeding in a similar manner with the remaining Ca 
atoms, we arrive at the arrangement of displacements 
shown in Fig. 3. If we now assume that the tilt-system 
space group is the same as that of the crystal (Pbnm), 
with the origin half-way between Ca atoms along [001], 
it is easily seen that the Ti atoms are not displaced at 
all, as they lie on centres of symmetry. It is worth 
noting that there is an alternative choice of origin for 
this structure. We could place the Ca atoms on centres 
of symmetry and then the Ti atoms would have free- 
dom to be displaced. This is a less likely structure since 
it ignores the steric effects of the O atoms on the Ca 
atom. We conclude, therefore, that the cation displace- 
ments must lie approximately along the (1]0) pseudo- 
cubic directions (the (010) directions of the ortho- 
rhombic cell) in antiparallel sheets perpendicular to 
[001]. The extra reflexions, therefore must have l odd 
and hence they are 

N hkl 
13 023, 203 
17 401,041 
29 025, 205. 

Reference to Kay & Bailey (1957) shows that our 
structure is correct and, in fact, their refinement 
resulted in Ca atoms displaced exactly along the (1]0) 
pseudocubic directions (in some other perovskites 
with the same type of structure the A cations are not 
displaced exactly along these directions, although they 
are always fairly close to them). 

(c) The structure of PbZr0.gTi0.1Oa 
In Fig. 4 is shown the neutron diffraction pattern 

from a polycrystalline sample of PbZr0.gTi0.1Oa. Apart 
from a few extra reflexions the pattern looks very much 
like that from a primitive cubic structure. However the 
higher resolution found in X-ray photographs shows 
that reflexions such as hhh are split whilst h00 are not. 
From this we infer that the symmetry is probably 
rhombohedral. It is known that the material is a ferro- 
electric and so the cations are displaced in a parallel 
fashion, obviously along the threefold axis. The extra 
reflexions shown in the neutron profile do not appear 
in the X-ray photographs since they arise from the O 

Table 2. Indexing of  the powder pattern for CaTiO3 

N= h 2 + k 2 + l 2 N= h 2 + k 2 + l 2 

(Pseudocubic subcell) (Doubled cell) Type Tilt 
2½ 10 ooe, oeo or eoo + 
2¼ 11 ooo - 
3¼ 13 oee, eoe or eeo 
3} 14 ooe, oeo or eoo + 
4¼ 17 oee, eoe or eeo 
4¼ 19 ooe, oeo or eoo + 
5½ 22 ooe, oeo or eoo + 
7¼ 29 oee, eoe or eeo 
8~ 35 ooo -- 

o= odd e=even. 

hklfor a - a - e  + 

310, 130 
311, 131, 113 

312, 132 

~30 
~32 

531, 513, 135 . . .  
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1st Layer 
9 1 

( 12~ 

11 2/I 

lO 

(a) 

2nd Layer 
4 

b ~ ¼  ± 
4 

(b) 

Fig. 3. (a) The structure of CaTiO3. Full circles denote O atoms 
above the plane of the diagram whilst open circles are those 
below. Arrows indicate the directions of Ca displacements 
(at height ¼c); Ti atoms are at the centres of the octahedra. 
The dashed cell is the true crystallographic cell with space 
group Pbnm. (b) Symmetry elements of space group Pbnm. 

atoms which do not scatter X-rays strongly enough. It 
is a very simple matter to index them as 311,511 etc. 
(on a doubled cell 2a~, × 2bp × 2cp) and taking the prob- 
able rhombohedral symmetry into account we expect 
the tilt system to be (No. 14) a - a - a -  with symmetry 
R3c. The parallel cation (Pb and Zr/Ti) displacements 
mean that the space-group symmetry will be R3c, and 
this agrees with the earlier derivation by Michel, 
Moreau, Achenbach, Gerson & James (1969). Fig. 4, 
incidentally, shows the observed and calculated 
profiles computed with the profile refinement technique 
(Rietveld, 1969). On heating the powder, the extra 
reflexions are lost but the symmetry remains rhombo- 
hedral and the material is still ferroelectric. This 
means that the tilts are lost but the displacements 
remain to give space group R3m.  Finally at a higher 
temperature the symmetry becomes cubic and the 
displacements disappear to give the paraelectric phase. 
The whole series can be described by 

a - a - a - ( R 3 c )  

[111] displacements 

a ° a ° a ° ( R 3 m )  

[111] displacements 

a°a°a°(Pm3m) . 

C o n c l u s i o n  

It can be seen that by breaking the perovskite structure 
into simple components it is often possible to simplify 
greatly the task of ascertaining a trial model for the 
structure of these pseudosymmetric materials. The 
technique described works well for the vast majority 

e -  

¢ -  

t ~  
I _  

< 

A 

I I I I I I I I I ! I I I ! ! I I I I 
1 0  2 0  3 0  4 0  5 0  0 ° 

Fig. 4. Neutron diffraction profile of polycrystalline PbZro.gTi0.103 at room temperature (2 = 1.33 A). Arrows indicate difference 
reflexions arising from tilted octahedra. Points are the observed intensities, the full line is the calculated profile. The lower 
trace shows the difference between observed and calculated intensities (Glazer & Clarke, unpublished). 
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of perovskites. In fact the only perovskites known to 
the author in which difficulty would occur are NaNbOa 
(phases P and R), PbZrO3, possibly AgNbOa and 
AgTaO3, and KCuF3. In the last case the difficulty, as 
mentioned earlier, is the large Jahn-Teller distortion 
of the octahedra which dominates the symmetry. In the 
other cases, the difficulty lies in the fact that the tilt 
systems are not simple ones, but consist of combina- 
tions of the simple systems. However, even here it is 
possible to go some way towards deriving the correct 
structure, but great care is needed when attempting 
this. Fortunately such structures seem to be quite rare. 

At present this general method is being used tc 
analyse the complex sequence of phases in the system 
Na/KNbOa with considerable success. A preliminary 
note of this work has already been published (Ahtee & 
Glazer, 1974) in which tentative suggestions for the 
various structures have been made. Since then, many 
of these have been verified (manuscript in preparation), 
and this has shown that reliable trial models can be 
obtained very quickly even when there are many pos- 
sible phases within a single solid-solution series. 

I thank Dr H. D. Megaw for introducing me to the 
fascinating complexities of the perovskite structure, 
and the Wolfson Foundation for funds enabling this 
work to be carried out. 
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The origin peak in the Patterson function may be used to construct E values when the number and 
type of the atoms in the structure are known. This is illustrated by an example leading to an agreement 
value between the observed and calculated E values of 0" 170. For comparison, a least-squares calculation 
of the best overall anisotropic temperature factor results in an R of 0.167. The result obtained from a 
Wilson plot is 0.188. 

Introduction 

The origin peak in the Patterson function obeys the 
point-group symmetry of the Patterson function, and 
can therefore be expanded in harmonic functions of the 
appropriate symmetry. If the origin peak, deconvoluted 
with respect to thermal motion, is known, an analysis 
of the terms in the expansion will provide some 
information about the overall anisotropic thermal 
movements. The applied method of analysis, reveal- 
ing this information, follows closely the technique 
used in the analysis of the deformations of atoms 
(Kurki-Suonio & Meisalo, 1967; Kurki-Suonio, 1967, 
1968). 

Description of the method 

The square of the overall temperature factor is written as 

T(H)= ~ T,~(H)K,~(On, q)n). 
n t ~  

The K,~ form a complete set of orthonormal harmonic 
functions adapted to the symmetry of the Patterson 
function, and H, On and ~0n are the spherical coor- 
dinates of the reciprocal-lattice vector H. The functions 
T,,(H) are then calculated from the expression 

T,, , iH)=(4n)zv - '  ~ A(G)K,,* (OG,~o13) 
13 

S 2 x j,(2ngu)j,,(2nGu)u du. (1) 
0 


